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ABSTRACT: To examine atmospheric and oceanic predictability based on nonlinear error growth dynamics, the authors
introduced recently a new method using the nonlinear local Lyapunov exponent (NLLE). In this study, the NLLE method
is employed to investigate the temporal—spatial distribution of the limit of sea surface temperature (SST) predictability,
based on reanalysis monthly SST data. The results show that the annual mean limit of SST predictability is the greatest
in the tropical central—eastern Pacific (>8 months). Relatively high values were also obtained for the tropical Indian and
Atlantic Oceans (5—8 months). In the northern and southern mid-high latitude oceans, the limit of SST predictability is less
than 6 months, with a minimum value of only 2—3 months. The limit of SST predictability in different oceanic regions
shows significant seasonal variations, related to the persistence barriers that occur during particular seasons. In addition to
the well-known spring persistence barrier (SPB) in the tropical central—eastern Pacific, persistence barriers also occur in
other ocean areas during seasons other than spring. A winter persistence barrier (WPB) exists in the southeastern tropical
Indian Ocean and the northern tropical Atlantic. In the North Pacific and North Atlantic, a persistence barrier exists around
July—September. These seasonal persistence barriers cause a relatively low limit of SST predictability when predictions
are made across the season in which the barriers occur. In contrast, when predictions are made initiated from the season
with a persistence barrier, the SST errors show rapid initial growth but slow growth in the following seasons, resulting
in a relatively high limit in predictability. Analyses also indicate that the possibility of really eliminating the effects of
persistence barriers on SST errors by improving ocean—atmosphere coupled general circulation models (CGCMs) or the

data assimilation procedure is very low. Copyright © 2012 Royal Meteorological Society
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1. Introduction

Sea surface temperature (SST), which is one of the most
important variables related to the global ocean—atmos-
phere system, is widely applied as a boundary condi-
tion for monthly to seasonal climate predictions (Palmer
and Anderson, 1994; Chowdary et al., 2010, 2011). The
importance of SST to accurate seasonal forecasting of
extreme climate events has been increasingly recognized
in recent decades (Goswami and Shukla, 1991; Bengts-
son et al., 1993; Trenberth et al., 1998; Peng et al., 2000;
Frederiksen et al., 2001; Kang and Shukla, 2006). To
date, significant progress in SST prediction has been
achieved using ocean—atmosphere coupled general circu-
lation models (CGCMs) with various complexities (Chen
et al., 1995; Barnston et al., 1999; Kug et al., 2007).
However, SST in the current CGCMs can only be accu-
rately predicted for limited lead times, thereby indicating
that SST predictability is inherently limited. The limited
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predictability of SST may arise from incomplete or inac-
curate observations in the initial ocean—atmosphere state
or from the use of imperfect models (Collins et al., 2002).
It is important to determine the limit of SST predictabil-
ity, as such information could be used as a basic guideline
in future improvements to forecasting models. The occur-
rence of spatial variations in the ocean—atmosphere cou-
pling dynamics means that the limit of SST predictability
may differ in different ocean areas. It is therefore an
important task to investigate the temporal—spatial dis-
tribution of the limit of SST predictability.

The El Nifio-Southern Oscillation (ENSO) pheno-
menon, which originates in the tropical Pacific, has a
widespread effect on the global climate system; conse-
quently, considerable research effort has been devoted to
determining the limit of ENSO predictability. The limit
of ENSO predictability is found to be model-dependent,
ranging from a few months to several years (Philander,
1990; Latif et al., 1998; Collins et al., 2002; Jin et al.,
2008; Luo et al., 2008; Stockdale et al., 2011). How-
ever, most ENSO forecast models suffer from a decrease
in forecast skill during the boreal spring (March—May),
which is known as the spring persistence barrier (SPB)
(Webster and Yang, 1992). The accurate forecasting of
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ENSO by more than a season or two in advance is
apparently limited by the SPB phenomenon. Compared
with ENSO, SST variability in the tropical Atlantic and
Indian oceans is typically weaker, and is generally given
little attention in global seasonal forecast systems. Yet
SST variability in the tropical Atlantic and Indian oceans
is by no means negligible and could have a substantial
impact on the atmosphere and on seasonal weather pat-
terns (Folland et al., 1986; Guan and Yamagata, 2003;
Taschetto and Wainer, 2008; Ding et al., 2010a; Li et al.,
2010; Li et al., 2011). Many recent research efforts are
directed towards investigating the SST predictability in
the tropical Atlantic and Indian oceans using statistical
or dynamical models, revealing that the SST anomaly
(SSTA) in these oceans can be well predicted up to one
or two seasons in advance (Repelli and Nobre, 2004;
Wajsowicz, 2005; Stockdale et al., 2006; Luo et al.,
2007). In addition to the tropical SSTs, previous stud-
ies have demonstrated a connection between SSTA in
mid-latitudes and anomalous atmospheric circulations in
overlying and downstream regions (Davis, 1978; Namias,
1986; Wu and Liu, 2004; Frankignoul and Sennéchael,
2007; Zhao and Li, 2010; Wu et al., 2009, 2011; Nnam-
chi and Li, 2011; Nnamchi et al., 2011). Therefore, there
exists a need to predict extratropical SSTs in advance, yet
most previous studies have focused on tropical SSTs. As
a result, little is known of the limit of SST predictability
in the extratropical oceans.

The objective of this study is to determine the spa-
tial distribution of the limit of SST predictability in the
global oceans based on reanalysis SST data, which con-
tain a large proportion of the real information regard-
ing SST, including its variability and regional fea-
tures of ocean—atmosphere coupling dynamics (Smith
and Reynolds, 2004). Previous studies have investigated
the prediction skill of global SST based on numeri-
cal models (Luo et al., 2005; Kug et al., 2007). How-
ever, almost all of numerical models in use today
are imperfect and deficiencies remain in simulating
SST variability (see online at http://iri.columbia.edu/
climate/ENSO/currentinfo/archive). Model errors have a
strong influence on estimates of SST predictability, mean-
ing that such estimates are commonly model-dependent.
Moreover, these studies provided only qualitative esti-
mates of SST predictability, such as information on
regions with either higher or lower skill but no quan-
titative estimate of the limit of SST predictability.

Given the lack of realistic CGCMs in predicting SST,
it is more appropriate to determine its predictability limit
based on reanalysis SST data. A new method to this prob-
lem, employing the nonlinear local Lyapunov exponent
(NLLE), was recently introduced to investigate atmo-
spheric and oceanic predictability (Chen et al., 2006; Li
et al., 2006; Ding and Li, 2007; Li and Wang, 2008; Li
and Ding, 2011). The NLLE measures the average growth
rate of initial errors of nonlinear dynamical models with-
out linearizing the governing equations. Using the NLLE
and its derivatives, the limit of dynamical predictability of
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chaotic systems can be quantitatively determined. Com-
pared to traditional Lyapunov exponents based on linear
error dynamics, the NLLE is more suitable for deter-
mining quantitatively the predictability limit of a chaotic
system (Astudillo et al., 2010; Rogberg et al., 2010). To
apply the NLLE method to the study of atmospheric and
oceanic predictability, a reasonable and efficient algo-
rithm has been devised to enable estimates of the NLLE
and its derivatives based on observational or reanalysis
data (Ding et al., 2008; Li and Ding, 2011). Accordingly,
the limit of SST predictability at each grid point over
the global ocean can now be assessed using the NLLE
method.

The reminder of this paper is arranged as follows.
Section 2 describes the data used in this study. Section
3 introduces the NLLE method. Section 4 discusses the
spatial distribution of the annual mean predictability limit
of global SST. Section 5 presents spatial variations in the
seasonal mean predictability limit of global SST. Finally,
Section 6 provides a summary and concluding remark.

2. Data

The SST dataset used in this study is version 2 of monthly
NOAA Extended Reconstructed SST (ERSST.v2) data
on a 2°x 2° spatial grid for the period 1854-2005
(Smith and Reynolds, 2004). The SST data used for
ERSST.v2 are derived from the latest version of the
Comprehensive Ocean—Atmosphere Data Set. ERSST.v2
has been proved to be reliable for climate analysis and
modeling (Smith and Reynolds, 2004). Before applying
the NLLE method, the annual cycle of SST data is first
removed to obtain the SSTA. On the basis of the time
series of SSTA, the limit of monthly SST predictability
at each grid point can be determined by employing the
NLLE method. The spatial distribution of the limit of
SST predictability is then investigated. It should be noted
that the time series of SST data extends from 1854
to 2005, meaning that it may contain variability on all
time scales up to and including multi-decadal. It also
possibly contains a secular trend associated with global
warming (Lau and Weng, 1999). However, any multi-
decadal variability or secular trend contained in SST data
would have little effect on estimates of the predictability
limit of monthly SST because the limit is generally less
than 1 year. Thus, in the NLLE method, the raw time
series of SSTA is directly used without processing.

3. Nonlinear local Lyapunov exponent (NLLE)
3.1.

Consider a general n-dimensional nonlinear dynamical
system whose evolution is governed by
dx

-5 —F®) (1)

NLLE of an n-dimensional dynamical system

where x = [x(¢), xp(t), -+ --- , X, (1)]T is the state vector
at the time ¢, the superscript T is the transpose, and F
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represents the dynamics. The evolution of a small error
8§ =1[61(2), 82(t), -+ , 8,()]", superimposed on a state
X, is governed by the nonlinear equations:

d
ES =J(x)é + G(x,9) 2

where J(x)d are the tangent linear terms, and G(x, §) are
the high-order nonlinear terms of the error . Because
of some difficulties in solving the nonlinear problem,
most previous studies (Lorenz, 1965; Eckmann and
Ruelle, 1985; Yoden and Nomura, 1993; Kazantsev,
1999; Ziehmann et al., 2000) assumed that the initial
perturbations were sufficiently small that their evolution
could be approximately governed by the tangent linear
model of the nonlinear model. However, the tangent
linear approximation to error growth equations is not
applicable to situations in which the initial errors are
not very small (Lacarra and Talagrand, 1988; Mu, 2000;
Ding and Li, 2007; Li and Ding, 2011). Therefore, the
nonlinear behaviors of error growth should be considered
in determining the limit of predictability. Without a
linear approximation, the solutions of Equation (2) can be
obtained by numerically integrating it along the reference
solution x from t = #y to 1y + T:

31 = 1(Xo, 8o, T)do 3

where 81 = d(fp + 1), Xo = X(f), 8o = 8(tp), and n(xo,
89, T) is the nonlinear propagator. The NLLE is then
defined as

116

A(Xg, 80, T) = ;ln 130l]

“4)

where A(Xg, 8y, T) depends in general on the initial state
Xo in phase space, the initial error §y, and time 7. The
NLLE differs from existing local or finite-time Lyapunov
exponents defined based on linear error dynamics (Yoden
and Nomura, 1993; Kazantsev, 1999; Ziehmann et al.,
2000), which depend solely on the initial state x, and
time 7, not on the initial error §;. The ensemble mean
NLLE over the global attractor of the dynamical system
is given by

70, 7) = / Ao 80, T)dx
Q
— (%0, 80, s (N = 00) 5)

where 2 represents the domain of the global attractor
of the system and () denotes the ensemble average of
samples of sufficiently large size N (N — 00). The mean
relative growth of initial error (RGIE) can be obtained by

@ (8, ) = exp[A (8o, T)7] (6)

Using the theorem from Ding and Li (2007), we obtain

(8, t)—P>c(N — 00) (7)
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where —P——> denotes the convergence in probability and
c is a constant that depends on the converged probability
distribution P of error growth. The constant ¢ can be
considered as the theoretical saturation level of ® (8, 7).
Once the error growth reaches the saturation level,
almost all information on initial states is lost and the
prediction becomes meaningless. Using the theoretical
saturation level, the limit of dynamical predictability can
be quantitatively determined (Li et al., 2006; Ding and
Li, 2007; Li and Ding, 2011).

3.2. Estimating the NLLE from an observational time
series

For systems whose equations of motion are explicitly
known, such as the Lorenz system, we can directly
calculate the mean NLLE via numerical integration
of the system and its error evolution equations (Ding
and Li, 2007). However, some parameters and external
forcing terms in the dynamic equations of atmospheric
and oceanic motion are explicitly unknown, and there
exist uncertainties in determining these parameters and
external forcing terms. It is possible to estimate the NLLE
by making use of the large amounts of observational data
available for the atmosphere and ocean. In a previous
study, we developed an algorithm that yields estimates
of the NLLE and its derivatives based on atmospheric
observational data (Ding et al., 2008; Li and Ding,
2011). The general idea of the algorithm is to find local
analogues of the evolution pattern from observational
time series. The local analogues are searched for based
on the initial information and evolution information at
two different time points in the time series. If the initial
distance at two different time points is small and if their
evolutions are analogous over a very short interval, it
is very likely that the two points were analogous at
the initial time. This analogue is referred to as a ‘local
dynamical analogue’. A brief description of the algorithm
is given in Appendix A.

As noted by Lorenz (1969), a sufficiently long time
series is required when using historical analogues to
study atmospheric predictability. It is almost impossible
to find good natural analogues within current libraries
of historical atmospheric data over large regions such
as the Northern Hemisphere. However, it should be
noted that the ‘local dynamical analogue’ is searched
for from the observational time series for a small local
region, for which the small number of spatial degrees of
freedom makes it possible to find good local analogues
within current libraries of historical atmospheric data
which allows an ensemble average (Van den Dool, 1994).
On the basis of atmospheric observational data, the
NLLE method has been used to investigate decadal
changes in weather predictability (Ding et al., 2008),
the temporal—spatial distribution of the predictability
of monthly and seasonal means of climate variables
(Li and Ding, 2008), and the predictability limit of
the Madden—Julian oscillation (Ding et al., 2010b; Ding
etal., 2011).

Int. J. Climatol. 33: 1936—1947 (2013)
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Figure 1. Time evolution of the nonlinear average growth of initial

error (E) for the area-averaged SST over the NINO3.4 region (solid

line). The dashed red line indicates the linear average growth of initial

error, as obtained by using the linear Lyapunov method (Wolf et al.,

1985). The dashed blue line represents the 95% level of the saturation
value.

To illustrate the advantage of using the NLLE method
(instead of the linear Lyapunov method) to determine
the predictability limit of monthly SST, we turn to the
case of the area-averaged SST over the NINO3.4 region
(5°S-5°N, 170°-120°W). Figure 1 shows the nonlinear
(as obtained by using the NLLE method) and linear (as
obtained by using the linear Lyapunov method; Wolf
et al., 1985) average growth of errors for the NINO3.4
SST. In Figure 1, there are only trivial differences
between the linear and nonlinear error evolutions within
a short time interval. With increasing time, however,
the nonlinear error evolution begins to depart from the
linear evolution and finally reaches a saturation value. In
contrast, the linear error evolution shows a continuous
exponential growth. To reduce the effects of sampling
fluctuations, the predictability limit of SST in this study is
defined as the time at which the error reaches 95% of the
saturation level. From Figure 1, the predictability limit
of the NINO3.4 SST, as obtained based on the nonlinear
error evolution, is about 9 months, much greater than the
predictability limit (only ~2 months), as obtained based
on the linear error evolution. In this study, we explore the
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temporal —spatial distribution of the predictability limit of
reanalysis monthly SST data based on the NLLE method.

4. Annual mean predictability limit of monthly SST

Figure 2 shows the spatial distribution of the annual mean
predictability limit of monthly SST. Overall, the limit
of SST predictability appears to have a zonal distribu-
tion, which is more clearly seen in the zonal mean.
The predictability limit in the tropical oceans is much
higher than that in the extratropical oceans. In the trop-
ical central—eastern Pacific, where ENSO events occur,
the predictability limit of monthly SST exceeds 8 months.
The predictability limit in the tropical Indian and Atlantic
oceans is also relatively high (5-8 months). The pre-
dictability limit in the tropical Indian Ocean is generally
lower than that in the tropical Pacific, possibly because
the Indian Ocean climate is affected by complicated phys-
ical processes such as the strong Indian/Asian monsoon,
external influences of ENSO, and chaotic intraseasonal
oscillations in both the atmosphere and ocean (Luo ef al.,
2007). Variability in tropical Atlantic SST is driven by
local ocean—atmosphere interaction and remote ENSO
effects (Chang ef al., 2003), resulting in lower pre-
dictability than that obtained for tropical Pacific SST. In
the northern and southern mid-high latitude oceans, the
ocean—atmosphere feedback is very weak and SST pre-
dictability is greatly limited by atmospheric noise; con-
sequently, the predictability limit in these areas is small
(<6 months, with a minimum value of 2-3 months).
Current CGCMs show higher skill in predicting tropical
SSTs than in predicting extratropical SSTs (Kug et al.,
2007). It should be emphasized that ENSO events occur
very irregularly with a timescale of 2—7 years. One year
there might be no ENSO events occurring. Therefore, the
predictability limit of SST in the tropical central—eastern
Pacific, as calculated in the present study, does not
entirely represent the predictability limit of ENSO events;
it only provides a measure of the average predictability
of the tropical central—eastern Pacific SST. Nevertheless,
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Figure 2. Spatial distribution of the annual mean predictability limit (7}, in month) of monthly SST (left) and its zonal mean profile (right).
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considering the high predictability of ENSO events, it
is very likely that ENSO events make a large contri-
bution to the predictability limit of SST in the tropical
central—eastern Pacific, resulting in higher predictability
in this region than in other ocean areas.

In addition to the global feature of the zonal distri-
bution mentioned above, the limit of SST predictability
shows some local characteristics. In the tropical cen-
tral—eastern Pacific, the predictability limit is the high-
est in the NINO3.4 region (5°S-5°N, 170°-120°W)
(>10 months), followed by the NINO3 region (5°S-5°N,
150°-90°W) and the NINO4 region (5°S-5°N, 160°E—
150°W) (8—11 months), and finally the NINO1+2 region
(10°S-0°, 90°-80°W) (~8 months). Given that pre-
dictability is the highest in the NINO3.4 region, it is
most appropriate to predict NINO3.4 SST in advance
using the CGCMs. The predictability limit in the trop-
ical western Pacific is only 4-5 months, smaller than
that in the tropical central—eastern Pacific. In the trop-
ical Indian Ocean, the predictability limit is higher in
the southwestern than southeastern tropical Indian Ocean.
In the tropical Atlantic Ocean, the predictability limit
is generally higher in the southern than northern tropi-
cal Atlantic; a region of low predictability (3—4 months)
occurs off coast of the northwestern South America.
In the northern mid-high latitude oceans, regions with
low SST predictability are found off the east coast of
continents and in the Mediterranean, where certain pro-
cesses (e.g. surface runoff and human factors) affect the
overall SST in a highly complex manner, resulting in
lower predictability. The predictability limit in the North
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Pacific is around 4—6 months, greater than that in the
North Atlantic (3—4 months). The distribution of the pre-
dictability limit is relatively uniform in the southern mid-
high latitude oceans, consistent with the uniform terrain
in the southern mid-latitudes.

5. Seasonal mean predictability limit of monthly
SST

Figure 3(a)—(d) shows the spatial distribution of the
predictability limit of global SST initiated from months in
spring (MAM), summer (JJA), autumn (SON) and winter
(DJF), respectively, revealing clear seasonal variations.
Next, we separately examine variations in the seasonal
mean predictability limit of SSTA in different ocean
areas.

5.1

The limit of SST predictability in the equatorial cen-
tral—eastern Pacific is very high in spring (Figure 3);
large regions have a predictability limit exceeding
11 months, including both the NINO3 and NINO4
regions. The predictability limit in the NINO1+2 region is
9-10 months. In summer, the limit of SST predictability
is less than that in spring, being 9—10 months in the equa-
torial central-eastern Pacific. Regions with a predictabil-
ity limit exceeding 11 months are restricted to areas
located south and north of the equatorial central—eastern
Pacific. In autumn, the limit of SST predictability in
the equatorial eastern Pacific shows a further decrease
to 6—7 months, obviously lower than the annual mean

Tropical central—eastern Pacific

(b) Summer

120 180 120W 60W O

120E 180 120W 6OW O

0 60E

7 8 8 o 11 12

Figure 3. Spatial distribution of the predictability limit of monthly SST (in month) initiated from months in spring (MAM) (a), summer (JJA)
(b), autumn (SON) (c), and winter (DJF) (d).
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predictability limit. In winter, the limit of SST pre-
dictability in the equatorial eastern Pacific reaches its
lowest value, being 4—5 months in the NINO3 region.
Seasonal variations of SST predictability in the equato-
rial central—eastern Pacific can be more clearly seen from
anomalies of the seasonal mean predictability limit rela-
tive to the annual mean (not shown). The predictability
limit is the highest in spring, when positive anomalies
occur over most of the equatorial central—eastern Pacific.
The predictability limit is next highest in summer, fol-
lowed by autumn and winter, when negative anomalies
occur over most of the equatorial central—eastern Pacific.

Figure 4 shows seasonal variations in the area-averaged
predictability limit over the NINO1+2, NINO3, NINO4,
and NINO3.4 regions. Similar seasonal variations are
found for the NINO3, NINO4, and NINO3.4 regions,
with the highest value in spring, followed by summer
and autumn, and finally winter. From spring to winter,
the predictability limit shows a gradual decrease in all
three of these regions, with the most pronounced decrease
seen in the NINO3 region, from 11 months in spring
to ~5 months in winter. As a crucial region in predict-
ing ENSO events, the low predictability of SST in the
NINO3 region makes it difficult to make long-lead pre-
dictions of ENSO events initiated from winter months.
The predictability limit in the NINO1+2 region is the
highest in winter, followed by spring and summer, and
finally autumn, which differs from the seasonal variations
in predictability limit obtained for the other three NINO
regions.

In the NINO3, NINO4 and NINO3.4 regions, the low
SST predictability in winter may be related to ENSO
SPB. In the case that an ENSO prediction is initiated
from a winter month, the forecast error would grow
rapidly and reach saturation when the prediction runs
across the spring, resulting in a low predictability limit in
winter (Figure 5). In contrast, in the case that an ENSO
prediction is initiated from a spring month, although the
forecast error shows rapid initial growth, the forecast
error would grow slowly in the following summer,
autumn, and winter months, resulting in a relatively high
predictability limit in spring. For predictions initiated
from a summer month, the forecast error would grow

12

10 -

predictability limit (months)
(=]

4 | T T
spring summer autumn  winter spring

Figure 4. Seasonal variations in the predictability limit of monthly
SST averaged over the NINO1+-2 (open circle), NINO3 (closed circle),
NINO4 (open triangle), and NINO3.4 (closed triangle) regions.
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Figure 5. Time evolution of the mean relative growth of initial error

(E) for the NINO3 SSTA initiated from months in spring (thin solid

line), summer (thick solid line), autumn (thin dashed line), and winter
(thick dashed line).

slowly during the following autumn and winter months.
It is only when the prediction runs across the spring
of the following year that the forecast error reaches
saturation and predictability is lost. Consequently, the
SST predictability is higher in summer than in autumn
and winter.

Saha et al. (2006) showed that the NCEP CFS SST
retrospective forecasts experience a large drop in skill
in boreal spring, but the potential predictability under
perfect model assumption is less sensitive to seasons.
The results of Saha et al. (2006) indicated that system-
atic model errors may be major factors limiting the pre-
dictability and degrading the forecast skill in spring. Chen
et al. (1995) also suggested that the SPB is not intrinsic
to the real climate system and that it may be a problem
of the models. However, our results in the present study,
as obtained from observational SST data, have indicated
that ENSO SPB seems to be unrelated to the models and
may be intrinsic to the real ocean—atmosphere system.
The reasons for this inconsistency remain unexplained.
Further study is necessary in this regard.

5.2. Tropical Indian Ocean

In the tropical Indian Ocean, the limit of SST predictabil-
ity is the highest in winter, when it exceeds 8 months over
most of the region (Figure 3). Especially in the south-
eastern tropical Indian Ocean, the predictability limit in
winter is significantly higher than the annual mean pre-
dictability limit. The predictability limit is also relatively
high in spring, when anomalies of the predictability limit
relative to the annual mean are positive over most of
the tropical Indian Ocean. The predictability limit is rel-
atively low in summer and autumn, when it is lower
than the annual mean predictability limit over most of the
tropical Indian Ocean. In the southeastern tropical Indian
Ocean, the predictability limit is the lowest (2—4 months)
in autumn.

Saji et al. (1999) first introduced the Indian Ocean
Dipole (IOD) to denote a basin-wide ocean—atmosphere
coupled mode in the tropical Indian Ocean. The positive
IOD event is characterized by positive SSTA in the

Int. J. Climatol. 33: 1936—-1947 (2013)
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Figure 6. Seasonal variations in the predictability limit of monthly

SST averaged over the southeastern tropical Indian Ocean (10°S-0°,

90°-110°E) (closed circle) and over the western tropical Indian Ocean
(10°S-10°N, 50°-70°E) (closed triangle).

western tropical Indian Ocean (10°S—10°N, 50°-70°E)
and negative SSTA in the southeastern tropical Indian
Ocean (10°S-0°, 90°—110°E). Figure 6 shows seasonal
variations in the area-averaged predictability limit over
these two regions, revealing marked seasonal changes in
the southeastern tropical Indian Ocean, where the limit is
the highest in winter, followed by spring and summer,
and finally autumn. The difference between the mean
predictability limit for winter and autumn is as much
as 7 months. In contrast, the predictability limit shows
no obvious seasonal variations in the western tropical
Indian Ocean, where area-averaged predictability limit is
~8 months in all four seasons.

Similar to the phenomenon of autocorrelations of the
tropical central—eastern Pacific SSTA, which show a
rapid decrease in the boreal spring, Wajsowicz (2005)
reported that autocorrelations of the southeastern tropical
Indian Ocean SSTA show a rapid decline in the boreal
winter, resulting in a winter persistence barrier (WPB).
Zhao and Li (2009) also showed a similar persistence
barrier of SSTA in the South China Sea and the vicinity of
Indonesia around the southeastern tropical Indian Ocean.
The WPB in the southeastern tropical Indian Ocean is
associated with strong seasonal phase locking of the IOD.
The 10D develops in summer and peaks in autumn under
the positive ocean—atmosphere feedback (Saji et al.,
1999). After reaching its peak, the IOD collapses quickly
in winter due to the reversal of monsoonal winds (Li
et al., 2003). Luo et al. (2007) showed that only SSTA
in the southeastern tropical Indian Ocean exhibit the
phenomenon of a WPB. SSTA in the western tropical
Indian Ocean is more predictable in winter because of
the strong influence of ENSO in this region. In the
southeastern tropical Indian Ocean, the occurrence of the
lowest predictability limit in autumn is probably linked to
the phenomenon of WPB. The forecast error of SSTA in
this region would show rapid growth when the prediction
runs across winter. Given that winter follows autumn, the
lowest predictability occurs in autumn. In the case that
the prediction is made initiated from a winter month,
although the forecast error shows rapid initial growth,
the forecast error would grow slowly in the following

Copyright © 2012 Royal Meteorological Society

J. LT AND R. DING

spring, summer and autumn months; consequently, the
highest predictability limit would occur in winter. As a
result, influenced by the WPB, there is a large difference
(as much as 7 months) in the mean predictability limit
of the southeastern tropical Indian Ocean SST between
winter and autumn.

Luo et al. (2007) showed that for the forecasts of the
southeastern tropical Indian Ocean SSTA started from
July, there is a robust bounce-back of the forecast skill
(as measured by anomaly correlation coefficient) after
winter in the SINTEX-F-coupled model. Wang et al.
(2009) indicated that other coupled models may have
similar characteristics. However, from the error growth
curve of the southeastern tropical Indian Ocean SSTA
(not shown), as obtained using the NLLE method, the
phenomenon of the bounce-back of the forecast error is
not found. This result indicates that the NLLE method has
difficulty in considering the bounce-back of the forecast
skill. Further work is required to extend the applicability
of the NLLE method.

5.3. Tropical Atlantic

Seasonal variations in the limit of SST predictability
are different in the northern tropical Atlantic (5°—20°N,
35°—~15°W) and in the southern tropical Atlantic (20°—
5°S, 35°-10°W) (Figure 7). The predictability limit in
the northern tropical Atlantic shows similar seasonal
variations to those in the southeastern tropical Indian
Ocean (Figure 6), with relatively high values in winter
and spring, and relatively low values in summer and
autumn. In the northern tropical Atlantic, the difference in
the mean predictability limit between winter and autumn
exceeds 5 months. The predictability limit in the southern
tropical Atlantic is the lowest in summer and the highest
in winter. The predictability limit in spring and autumn
is similar to that in winter. The large amplitude of sea-
sonal variations in the predictability limit indicates that
a WPB phenomenon may exist in the northern tropical
Atlantic, similar to the situation in the southeastern trop-
ical Indian Ocean. As expected, SSTA persistence in the

12

10 1

predictability limit (months)
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spring summer autumn  winter spring

Figure 7. Seasonal variations in the predictability limit of monthly SST

averaged over the southern tropical Atlantic (20°-5°S, 35°-10°W)

(closed circle) and over the northern tropical Atlantic (5°-20°N,
35°-15°W) (closed triangle).
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tropical northern Atlantic shows a marked decline in win-
ter (Ding and Li, 2011). Recent studies suggest that cli-
mate variability in the tropical Atlantic sector is affected
mainly by thermodynamic feedback and the remote influ-
ence of ENSO (Chang et al., 2003). Our results show
that the WPB in the northern tropical Atlantic is due to
the influence of ENSO (Ding and Li, 2011). Affected by
remote ENSO forcing, the SSTA in the northern tropi-
cal Atlantic tends to be locked to the annual cycle, with
ENSO peaking in winter and the SSTA in the northern
tropical Atlantic peaking in the following spring. During
strong El Nifio events, the SSTA in the northern tropical
Atlantic shows a reversal in sign and a rapid warming
during winter. This sign reversal may explain the reduc-
tion in persistence, which is favorable for the occurrence
of the WPB in the northern tropical Atlantic. The influ-
ence of the WPB means that the highest value of the
predictability limit for the northern tropical Atlantic SST
occurs in winter and the lowest value occurs in autumn.

Compared with the northern tropical Atlantic SST,
the southern Atlantic tropical SST shows a weaker
lead—1lag correlation with the eastern tropical Pacific SST
(Saravanan and Chang, 2000). Therefore, the remote
effects of ENSO have a weaker influence on seasonal
variations in the predictability limit of the southern
tropical Atlantic SST. The low predictability of the
southern tropical Atlantic SST in summer is possibly
related to local physical processes in this region.

5.4. Extratropical oceans

Seasonal variations in the limit of SST predictability
are similar in the North Pacific and North Atlantic
(Figure 8). The predictability limit in both oceans is
the highest in autumn, followed by winter and summer,
and finally spring. The predictability limit in the North
Pacific is much higher than that in the North Atlantic
in autumn and winter, but is lower in spring and sum-
mer. Thus, the predictability limit in the North Pacific
shows more pronounced seasonal fluctuations than those
in the North Atlantic. In the North Pacific, the low pre-
dictability in spring and summer is possibly related to

predictabllity limit (months)

2 T T T
spring summer autumn  winter spring

Figure 8. Seasonal variations in the predictability limit of monthly

SST averaged over the North Pacific (40°—60°N, 120°E—120°W)

(closed circle), over the northern Atlantic (40°—60°N, 60°W-0°)

(closed triangle), and over the mid-high latitude oceans in the Southern
Hemisphere (40°—-60°S, 0°-360°).
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the July—September persistence barrier of SSTA (Namias
and Born, 1970, 1974; Ding and Li, 2009). The seasonal
differences in the persistence of North Pacific SSTA are
attributed to seasonal evolutions of wind speed and its
variability, which, in the North Pacific, are great in the
winter months and are small in July—September. Greater
wind stress is expected to result in enhanced vertical mix-
ing in the ocean surface layers. The upper-ocean mixed
layer depth in the North Pacific is observed to be the
thickest in winter and the thinnest in summer. The ther-
mal anomalies in the deep winter mixed layer are hard
to change, whereas those in the shallow summer mixed
layer tend to show considerable change. Therefore, the
persistence of North Pacific SSTA is the weakest in
July—September. The persistence of North Atlantic SSTA
shows similar seasonal variations to that of North Pacific
SSTA (Deser et al., 2003), resulting in similar seasonal
variations in the predictability limit in these oceans. It
remains unclear why the predictability limit in the North
Pacific is much higher than that in the North Atlantic
during autumn and winter. ENSO has a strong effect on
the atmospheric circulation and ocean—atmosphere heat
exchange over the North Pacific during winter, which in
turn affects the SSTA over the North Pacific (Lau and
Nath, 1996). Through this process, ENSO remote forc-
ing is likely to contribute to the high predictability of
North Pacific SSTA in autumn and winter.

In the southern mid-high latitude oceans, the pre-
dictability limit is the highest in spring and the lowest in
autumn. Because the seasons are opposite in the North-
ern and Southern Hemispheres, seasonal variations in the
predictability limit in the mid-high latitude oceans are
similar in the two hemispheres. This result suggests that
the same mechanisms may determine seasonal variations
in the predictability limit in the mid-high latitude oceans
of both hemispheres. Similar to tropical ocean SST, extra-
tropical ocean SST also shows a seasonal persistence
barrier that strongly influences seasonal variations in the
predictability limit of the extratropical ocean SST. The
above analysis reveals that seasonal persistence barri-
ers exist in many oceans, and are not limited to the
well-known SPB in the tropical central—eastern Pacific.
Although the mechanisms that underlie the development
of persistence barriers differ among the world’s oceans,
these barriers result in a very low limit of SST pre-
dictability when the prediction is made across the season
in which the barrier occurs.

6. Summary and discussion

This study investigated that the temporal—spatial distri-
bution of the predictability limit of monthly SST in the
global oceans based on observational data. The annual
mean predictability limit is very large in the tropical cen-
tral—eastern Pacific (>8 months), exceeding 10 months
in the NINO3.4 region; the limit is also relatively high
in the tropical Indian and Atlantic oceans (5—8 months).
In the northern and southern mid-high latitude oceans,
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the annual mean predictability limit is relatively small
(<6 months, with a minimum value of 2-3 months).
The regions with the lowest SST predictability are found
located off the east coast of continents in the Northern
Hemisphere and in the Mediterranean.

The limit of SST predictability across most of global
oceans shows significant seasonal variations. In the
tropical central—eastern Pacific, the predictability limit
is the highest in the boreal spring and the lowest in
the boreal winter. In the NINO3, NINO4 and NINO3.4
regions, the predictability limit shows a gradual decrease
from spring to winter. This reduction is most pronounced
in the NINO3 region, where the predictability limit
decreases from ~11 months in spring to just 5 months
in winter. The predictability limit in the southeastern
tropical Indian Ocean is the highest in the boreal winter
and the lowest in the boreal autumn, with a difference
of 7 months between these seasons. In contrast to the
southeastern tropical Indian Ocean, the predictability
limit in the western tropical Indian Ocean shows no
obvious seasonal variations. The predictability limit in
the northern tropical Atlantic shows similar seasonal
variations to those in the southeastern tropical Indian
Ocean, with relatively high values in the boreal winter
and spring, and relatively low values in the boreal
summer and autumn. The difference of the predictability
limit between winter and autumn exceeds 5 months. The
predictability limit in the North Pacific and North Atlantic
is the highest in the boreal autumn and the lowest in the
boreal spring. Similarly, the predictability limit in the
southern mid-high latitude oceans is the highest in austral
autumn and the lowest in the austral spring.

The occurrence of significant seasonal variations in the
predictability limit in various oceans is possibly related to
the persistence barriers that occur during particular sea-
sons. The SPB exists in the equatorial central—eastern
Pacific, and the WPB exists in the southeastern tropi-
cal Indian Ocean and northern tropical Atlantic. In the
North Pacific and North Atlantic, a persistence barrier
of SSTA exists around July—September. These seasonal
persistence barriers result in a relatively low limit of SST
predictability when the prediction is made across the sea-
son in which the barrier occurs. The mechanisms respon-
sible for the persistence barriers are different in different
oceans. Because the seasonal variations in the predictabil-
ity limit are obtained from observational SST data, the
seasonal persistence barriers in the various oceans may be
intrinsic features of the real ocean—atmosphere system.
This would make it very difficult to completely eliminate
the problems of the persistence barrier.

Recent studies have demonstrated that the useful
forecast skill of ENSO in existing coupled models can
exceed 12 months, even when initiated from months
in winter (Luo et al., 2005, 2008; Saha et al., 2006).
However, the predictability limit over most regions of
the tropical central—eastern Pacific in winter is less than
12 months, according to our results shown in Figure 3(d).
One possible reason for the relatively small predictability
limit of SST in the present work is that the skill
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assessments of ENSO forecasts in most previous studies
were based on retrospective forecasts (i.e. hindcasts).
While diagnoses of the skill estimated based on hindcasts
are helpful for an overall assessment of forecast systems,
such estimates may not necessarily be consistent with
the real-time forecast skill (Knutti, 2008; Wang et al.,
2010). Wang et al. (2010) showed that beyond 2 months,
the real-time forecast skill of the NINO3.4 SSTs in the
NCEP Climate Forecast System (CFS) is substantially
less than the 1981-2004 average hindcast skill. The
predictability of ENSO estimated based on retrospective
forecasts can be regarded as the potential predictability of
ENSO. In contrast, the NLLE method using the reanalysis
data provides an estimate of the average predictability of
ENSO, which could be lower than the estimates of the
potential predictability.

Another possible reason for the relatively small pre-
dictability limit of SST in the present work is that the
reanalysis SST data are insufficient to find good local
analogues. Li and Ding (2011) showed that if the num-
ber of experimental or observational points is insuffi-
cient to find good local analogues, the predictability limit
would be underestimated. Although current libraries of
historical SST data cover periods in excess of 150 years,
this is likely to be insufficient to find good local ana-
logues. Some false analogues are inevitably found in
observational SST data, thereby reducing the estimated
predictability limit. This may be one limitation of the
NLLE method in practice if we have only a relatively
short period of observational data. Since a longer period
of observational SST data is unavailable, further work
should employ the SST data from a long-term simulation
of current coupled models (such as the 1000-year con-
trol simulation of the GFDL model), and should assess
the sensitivity of the estimated SST predictability limit
to the length of the period of simulation SST data. The
results would be useful in understanding the extent to
which the predictability limit of SST in the present work
was underestimated using available reanalysis SST data.

Although the predictability limit of SST may be
underestimated in the present study, the spatial variability
of the predictability limit of SST could be realistic. The
predictability limit of SST, as depicted in Figure 2, shows
large spatial variability from the tropical to extratropical
oceans, reflecting the large regional differences in local
predictability limit. SST forecasts over the global oceans
could benefit from an improved understanding of the
spatial variability of the predictability limit of SST.

Another important point to be considered is the quality
of reanalysis SST data. Considering the data requirement
of the NLLE method, we investigate the temporal —spatial
distributions of the limit of SST predictability in the
global oceans using the ERSST data from 1854 to 2005.
Due to the sparse observations before 1950 (even prior to
1973 when satellite data were not available), the ERSST
data includes large uncertainty, thereby possibly intro-
ducing considerable errors in estimating the predictability
limit over the global oceans (especially the extratropical
oceans). Further work should be performed to compare
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the results of the limit of SST predictability with other
SST reanalysis or observational data.

In addition, the present study focuses on investigating
the temporal—spatial distribution of the predictability
limit of global SST. Little is known of the physical
processes responsible for spatial differences in the SST
predictability. Further study is necessary to examine the
physical processes that influence local SST predictability
in different oceans, as advances in this regard would
result in improved forecasting models. In addition, to gain
a more complete understanding of seasonal fluctuations
in SST predictability, it would be necessary to investigate
the mechanisms and effects of the persistence barriers.
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Appendix A

If we obtain the experimental data of a single variable
x of an n-dimensional chaotic system, or observe the
atmospheric or oceanic data of variable x at one point of
n spatial grid points (e.g. the time series of x is given
by {x(#;),i=0,1,2,------ ,m — 1} where m represents
the length of the time series), an algorithm that allows an
estimation of the mean NLLE from the experimental or
observational time series of variable x is given as follows.
Step 1. Taking x(tp) as the reference point at time
tg, we first seek the local dynamical analogue (LDA)
x(t;) of the reference point from the raw series. Two
distances (i.e. the initial distance between two points and
the evolutionary distance between their trajectories within
a short initial period) are used to measure the degree of
similarity between the points. All points x(#;)(|t; — to| >
tp, where tp is the time taken for autocorrelations of
variable x to drop to around 0.0, ensuring that a good
analogue pair is not merely due to persistence) in the
raw series form a set S. The initial distance d; between
the points x(f) and x(¢;) is given by
di = |x(t)) — x(1;)] (AD)

We assume that the evolutions of the two points are
analogous over a very short time t which is called
the initial evolutionary interval, if they are analogous at
the initial time. The choice of the initial evolutionary
interval T depends on the persistence of variable x; if the
persistence is low, the time over which two initially close
points remain analogous is relatively short. The time
taken for autocorrelations of variable x to drop to 0.9 can
be regarded as a rough estimate of the initial evolutionary
interval t. A high value (0.9) of autocorrelation is chosen
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to ensure a short initial evolutionary interval (the results
were found to be insensitive to the selected value). Within
the initial evolutionary interval 7 (z = KA, where A
is the sampling interval of the time series (i.e. A =
t; —ti—1) and K is the number of sampling interval
over the initial evolutionary), the evolutionary distance
d, between the two points x () and x(;) is given by

1 K
= [ E ) — A 2
de - K + 1 g [x(tz) x(t]—H)] (A2)

d; is the amount of the initial separation between the
two points x(f) and x(z;), while d, is the evolutionary
distance between their trajectories over the initial evo-
lutionary. The total distance d;, considering not only the
initial distance but also the evolutionary distance, is found
by adding d; and d,:

di=d; +d, (A3)
If d, is very small, it is highly likely that the points x(#j)
and x(#;) are LDA points at the initial time. Of course,
this approach is unlikely to exclude the possibility that
only the variable x and its most relevant variables remain
close, whereas other variables evolve very differently
over time, especially for high-dimensional dynamical
systems. Therefore, the analogues based on variable x
are only local analogues and that they cannot simply
be considered as global analogues. The constraint of the
total distance d;, which contains both initial information
and evolutionary information over an initial evolutionary,
allows us to exclude a large portion of all points with
large initial distances, thereby helping us to find a truly
local analogue of the reference point.

For every point x(¢;) in the set S, the value of d; can
be determined. The nearest neighbour (LDA) x(#;) of the
reference point x(fy) can be chosen from the set S only
if d; is the minimum. Then, the initial distance between
x(t9) and x(#;) is denoted as follows:

Li(to) = |x(t0) — x(t)|

Step 2. At time ;=i xA (i=1,2,3,------ , M,
where M is the total number of evolutionary steps),
x(ty) will have evolved to x(#p + t;) along the reference
trajectory, and x(#) will have evolved into x(#; + 7;)
along the analogous trajectory. The initial difference
L (tp) will have become:

Li(t) = |x(to + ) —x(t&x + 1)l (A5)
The growth rate of the initial error during the evolutionary
interval (t;) is

£ (r) = — In 21

SR i =1,2,3, M)
i Li(0)

(A6)
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With i gradually increasing, we can obtain the variation
of &/ (t;) as a function of the evolution time 7; (i =
1,2,3,-00n- , M).

Step 3. Taking x (¢;) as the reference state and evolution
time 7, =i x A (i=1,2,3,-----. , M), and repeating
Steps 1 and 2 above, we obtain the error growth rate
& (t;) as a function of the evolution time t;:

_ 1o Ly(w)
&(ti) = - In 7,0

(A7)

where L,(0) is the initial distance between the reference
point x(¢;) and its LDA, and L,(t;) is the evolution of
L,(0) with time T;.

Step 4. The above procedure is repeated until the
trajectory reaches the last reference point x(t,—p—1),
we have error growth rates at all reference points

{'x(t())?'x(tl)s """ a-x(tm—M—l)} giVen by
_ b Li(m)
§(ti) = - In 7,0
k=1,------ N i=1,2,3,------ . M) (A8)

where N =m — M is the total number of reference
points on the reference trajectory, 7, =i X A (i =
1,2,3,------ , M) is the evolution time, L; (0) is the
initial distance between the reference point x(#;) and its
LDA, and L;(t;) is the evolution of L;(0) with the time
7;. It follows that the average of error growth rates at all
reference points is

~ | N 1 N 1 Lk(Ti)
£(t) = ﬁ k;fk(fi) = N Z |:-,;_l In Lk(o):|

k=1
_ iln N Li(m) Ly(m) Ly(t) (A9)
= L,(0) L,(0) Ly (0)
That is,
= o [Li1@) La(m) Ly (%)
Xl nl =N o o) Ly (0)
(A10)

Step 5. Observing that the right-hand-side of Equation
(A10) is the geometric mean of the relative growth of
initial error (RGIE) of all reference points, we obtained
the approximation of the mean RGIE:

@(r;) = explé ()Tl (1 = 1,2,3, -+ M) (A1)
By investigating the evolution of ®(#;) with increasing
7;, we can estimate the mean predictability limit of the
variable x.
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